一些有趣的结论

归类于数学 一些有趣的结论已关闭评论

本文内容摘自多个数学参考书 1. 所有素数的倒数和发散:$\sum\limits_p\frac{1}{p}=+\infty$。 证明:令$N$为任意自然数,$\forall n< N$,将$n$唯一表示成素数的方幂的乘积,则由$\sum\limits_{k=0}^{+\infty}\frac{1}{p^k}=\frac{1}{1-1/p}$得, \[\sum\limits_{n=1}^N\frac{1}{n}\le{\prod\limits_{p\le{N}}\sum\limits_{k=0}^{+\infty}\frac{1}{p^k}}=\prod\limits_{p\le{N}}\fra […]

阶乘数对应的帕斯卡三角

归类于数学 阶乘数对应的帕斯卡三角已关闭评论

令$\phi_0(x)=x+x^2+\cdots+x^n=\frac{x-x^{n+1}}{1-x}$,$\phi_m(x)=x\phi_{m-1}^{’}(x)=x+2^mx^2+\cdots+n^mx^n$,可得 \[\phi_1(x)=\frac{x-(n+1)x^{n+1}+nx^{n+2}}{(1-x)^2},\] \[\phi_2(x)=\frac{x+x^2-(n+1)^2x^{n+1}+(2n^2+2n-1)x^{n+2}-n^2x^{n+3}}{(1-x)^3},\] \begin{align*} \phi_3(x)=&[x+4x^2+x^3-(n+1)^3x^{n+ […]

一类曲线定义

归类于数学 一类曲线定义已关闭评论

给定曲线的参数方程 \[\begin{cases}x=x(\theta)\\y=y(\theta)\end{cases}\] 对于曲线上一点$A(x(\theta_0),y(\theta_0))$,及平面上一点$S(a(\theta_0),b(\theta_0))$,过$S$作曲线在$A$点的切线的垂线,垂足为$B(x_1,y_1)$,求$B$点轨迹方程。 $A$点处曲线的切线$l$的切线方程为 \[y=y(\theta_0)+\frac{y^{’}(\theta_0)}{x^{’}(\theta_0)}(x-x(\theta_0))\] 又$BS\perp{AB}$,从而 \[\frac{y […]

顶部